活動分析系統使用者手冊
使用者手冊概述
本手冊為電商平台的業務人員、行銷人員和分析師提供活動分析系統的完整操作指南,包括活動管理、假期設定、效果分析和報表查詢。
系統功能概覽
核心功能
- ✅ 活動效果分析: 精確追蹤每個活動的真實貢獻
- ✅ 多活動歸因: 解決重疊活動的營收歸因問題
- ✅ 假期影響分析: 量化假期對業績的影響倍數
- ✅ 協作效果分析: 分析活動組合的協同效應
- ✅ 即時數據同步: 活動和假期變更立即生效
使用角色
- 行銷經理: 活動規劃、效果評估、預算分配
- 資料分析師: 深度分析、趨勢預測、報表製作
- 營運人員: 日常維護、假期管理、資料品質監控
快速入門指南
第一次使用
- 查看現有活動
sql
SELECT
campaign_name as "活動名稱",
campaign_type as "活動類型",
start_date as "開始日期",
end_date as "結束日期",
attribution_layer as "歸因層級"
FROM campaigns
WHERE end_date >= CURRENT_DATE
ORDER BY start_date;- 檢查系統狀態
sql
SELECT * FROM check_campaign_system_health();- 查看今日活動歸因
sql
SELECT jsonb_pretty(calculate_campaign_attributions(CURRENT_DATE));活動效果分析
1. 基礎活動效果報告
sql
-- 查看所有活動的基本效果指標
SELECT
campaign_name as "活動名稱",
attribution_layer as "歸因層級",
influenced_orders as "影響訂單數",
ROUND(total_attributed_revenue::numeric, 2) as "歸因營收",
ROUND(avg_attribution_weight::numeric, 4) as "平均歸因權重",
exclusive_orders as "獨占訂單",
collaborative_orders as "協作訂單"
FROM revenue_attribution_analysis
WHERE campaign_name IS NOT NULL
ORDER BY total_attributed_revenue DESC;報告解讀:
- 歸因營收: 活動的真實營收貢獻(避免重複計算)
- 平均歸因權重: 活動在重疊期間的平均影響力
- 獨占訂單: 僅受該活動影響的訂單
- 協作訂單: 受多個活動共同影響的訂單
2. 活動層級效果分析
sql
-- 按歸因層級分析活動效果
SELECT
attribution_layer as "歸因層級",
COUNT(*) as "活動數量",
SUM(influenced_orders) as "總影響訂單數",
ROUND(SUM(total_attributed_revenue)::numeric, 2) as "層級總營收",
ROUND(AVG(avg_attribution_weight)::numeric, 4) as "層級平均權重"
FROM revenue_attribution_analysis
WHERE campaign_name IS NOT NULL
GROUP BY attribution_layer
ORDER BY SUM(total_attributed_revenue) DESC;層級說明:
- site-wide: 全站影響(季節性、假期活動)
- target-oriented: 目標導向(會員、人群活動)
- category-specific: 品類專屬(商品、品類活動)
3. 活動協作效果分析
sql
-- 分析活動組合的協同效應
SELECT
concurrent_campaigns as "並發活動數",
campaign_combination as "活動組合",
occurrence_count as "發生次數",
ROUND(combination_revenue::numeric, 2) as "組合營收",
ROUND(revenue_share_pct::numeric, 2) as "營收占比%",
collaboration_type as "協作類型"
FROM campaign_collaboration_analysis
WHERE concurrent_campaigns > 1
ORDER BY combination_revenue DESC
LIMIT 10;協作分析洞察:
- dual_collaboration: 雙活動協作效果
- multi_collaboration: 多活動協作效果
- 高營收占比的組合值得重複執行
🏖️ 假期管理操作
1. 假期設定
sql
-- 新增假期
SELECT add_holiday('2025-12-25', '聖誕節');
SELECT add_holiday('2025-01-01', '元旦');
SELECT add_holiday('2025-02-10', '農曆新年');
-- 移除假期
SELECT remove_holiday('2025-12-25');2. 假期影響分析
sql
-- 查看假期對業績的影響
SELECT
holiday_date as "假期日期",
holiday_name as "假期名稱",
ROUND(revenue_multiplier::numeric, 2) as "營收倍數",
ROUND(orders_multiplier::numeric, 2) as "訂單倍數",
holiday_type as "假期類型"
FROM holiday_impact_summary
ORDER BY revenue_multiplier DESC;影響倍數解讀:
- 營收倍數 > 1.5: 顯著促進業績的重要假期
- 營收倍數 0.8-1.2: 對業績影響中性的假期
- 營收倍數 < 0.8: 可能對業績有負面影響的假期
3. 假期活動組合分析
sql
-- 分析假期期間的活動效果
SELECT
d.date as "日期",
h.name as "假期名稱",
STRING_AGG(c.campaign_name, ' + ') as "當日活動",
COUNT(c.id) as "活動數量"
FROM dim_date d
LEFT JOIN holidays h ON d.date = h.date
LEFT JOIN campaigns c ON d.date BETWEEN c.start_date AND c.end_date
WHERE d.is_holiday = TRUE
GROUP BY d.date, h.name
ORDER BY d.date DESC;📈 營運分析報表
1. 每日活動重疊報告
sql
-- 查看活動重疊的複雜度
SELECT
date as "日期",
concurrent_campaigns as "並發活動數",
campaigns_list as "活動清單",
complexity_level as "複雜度等級",
CASE
WHEN is_holiday THEN '假期'
WHEN is_weekend THEN '週末'
ELSE '平日'
END as "日期類型"
FROM campaign_overlap_calendar
WHERE date BETWEEN '2025-03-01' AND '2025-03-31'
ORDER BY date DESC;複雜度等級:
- simple: 單一活動或無活動
- moderate: 2個活動並行
- complex: 3個以上活動並行(需特別關注)
2. 活動效果趨勢分析
sql
-- 按時間分析活動效果趨勢
WITH daily_metrics AS (
SELECT
DATE_TRUNC('week', order_date) as week,
SUM(total_attributed_revenue) as weekly_revenue,
COUNT(DISTINCT campaign_id) as active_campaigns,
AVG(avg_concurrent_campaigns) as avg_concurrency
FROM revenue_attribution_analysis ra
JOIN (
SELECT DISTINCT
order_id,
order_date,
campaign_id
FROM (
SELECT
o.id as order_id,
o.created_at::date as order_date,
(attribution->>'campaign_id')::UUID as campaign_id
FROM orders o,
LATERAL jsonb_array_elements(
calculate_campaign_attributions(o.created_at::date)->'attributions'
) as attribution
WHERE o.status IN ('paid', 'processing', 'shipped', 'delivered', 'completed')
) expanded_orders
) orders_expanded ON ra.campaign_id = orders_expanded.campaign_id
GROUP BY DATE_TRUNC('week', order_date)
)
SELECT
week as "週",
ROUND(weekly_revenue::numeric, 2) as "週營收",
active_campaigns as "活躍活動數",
ROUND(avg_concurrency::numeric, 2) as "平均並發度"
FROM daily_metrics
ORDER BY week DESC
LIMIT 8;3. ROI 績效報告
sql
-- 計算活動投資報酬率 (需要活動成本資料)
SELECT
campaign_name as "活動名稱",
attribution_layer as "層級",
influenced_orders as "影響訂單",
ROUND(total_attributed_revenue::numeric, 2) as "歸因營收",
-- 假設有活動成本欄位
-- ROUND((total_attributed_revenue / campaign_cost - 1) * 100, 2) as "ROI%",
ROUND(total_attributed_revenue / influenced_orders::numeric, 2) as "平均訂單價值"
FROM revenue_attribution_analysis
WHERE campaign_name IS NOT NULL
AND influenced_orders > 0
ORDER BY total_attributed_revenue DESC;🔍 進階分析技巧
1. 活動歸因深度分析
sql
-- 分析特定日期的歸因細節
WITH attribution_detail AS (
SELECT jsonb_pretty(calculate_campaign_attributions('2025-03-08')) as attribution_json
)
SELECT attribution_json as "2025-03-08 歸因分析"
FROM attribution_detail;2. 活動效果預測分析
sql
-- 基於歷史資料預測活動效果
WITH campaign_patterns AS (
SELECT
campaign_type,
attribution_layer,
AVG(total_attributed_revenue) as avg_revenue,
AVG(influenced_orders) as avg_orders,
AVG(avg_attribution_weight) as avg_weight
FROM revenue_attribution_analysis
WHERE campaign_name IS NOT NULL
GROUP BY campaign_type, attribution_layer
)
SELECT
campaign_type as "活動類型",
attribution_layer as "歸因層級",
ROUND(avg_revenue::numeric, 2) as "預期平均營收",
ROUND(avg_orders::numeric, 0) as "預期影響訂單",
ROUND(avg_weight::numeric, 4) as "預期歸因權重"
FROM campaign_patterns
ORDER BY avg_revenue DESC;3. 季節性趨勢分析
sql
-- 分析不同月份的活動效果模式
SELECT
EXTRACT(MONTH FROM order_date) as "月份",
COUNT(DISTINCT campaign_id) as "活動數量",
SUM(total_attributed_revenue) as "月度總營收",
AVG(avg_concurrent_campaigns) as "平均並發度"
FROM revenue_attribution_analysis
WHERE order_date IS NOT NULL
GROUP BY EXTRACT(MONTH FROM order_date)
ORDER BY "月份";常見使用問題
問題 1: 為什麼營收數字和傳統報表不同?
答案: 新系統使用分層歸因機制,解決了重疊活動的重複計算問題。傳統方法可能將同一筆訂單計算給多個活動,而新系統按權重分配,確保總營收的準確性。
驗證方法:
sql
-- 比較歸因方法的差異
SELECT * FROM compare_attribution_methods(
'2025-03-01'::DATE,
'2025-03-31'::DATE
);問題 2: 如何理解歸因權重?
答案: 歸因權重表示活動在重疊期間的影響力佔比:
- 1.0: 該活動在其層級中完全主導
- 0.5: 該活動與同層級其他活動平分影響力
- 0.3: 該活動是次要影響因素
問題 3: 為什麼有些活動沒有歸因營收?
可能原因:
- 活動期間沒有符合條件的訂單
- 活動權重設定為 0
- 活動日期設定錯誤
檢查方法:
sql
-- 檢查活動設定
SELECT
campaign_name,
start_date,
end_date,
attribution_weight,
attribution_layer
FROM campaigns
WHERE campaign_name = '您的活動名稱';
-- 檢查活動期間的訂單
SELECT COUNT(*) as order_count, SUM(total_amount) as total_revenue
FROM orders
WHERE created_at::date BETWEEN '活動開始日期' AND '活動結束日期'
AND status IN ('paid', 'processing', 'shipped', 'delivered', 'completed');日常操作檢查清單
行銷人員日常檢查
- [ ] 檢查進行中活動的即時效果
- [ ] 監控活動重疊情況
- [ ] 分析昨日營收歸因
- [ ] 檢查假期設定是否完整
分析師日常檢查
- [ ] 驗證數據品質
- [ ] 製作週度效果報告
- [ ] 分析活動協作模式
- [ ] 預測未來活動效果
營運人員日常檢查
- [ ] 執行系統健康檢查
- [ ] 確認假期同步狀態
- [ ] 監控查詢效能
- [ ] 處理異常數據
📞 支援和協助
技術支援
- 如遇到查詢錯誤或系統異常,請聯絡資料工程團隊
- 提供具體的錯誤訊息和執行的 SQL 語句
業務諮詢
- 關於歸因邏輯或分析方法的疑問,請參考技術文件
- 新需求或功能改進建議,請提交需求單
學習資源
🎓 最佳實踐建議
活動規劃建議
- 避免過度重疊: 同層級活動重疊可能稀釋個別效果
- 平衡活動組合: 搭配不同層級活動以最大化協作效應
- 考慮假期因素: 假期期間調整活動策略和預期
分析習慣建議
- 定期檢查: 每週檢查歸因品質和數據一致性
- 趨勢對比: 比較同期活動效果,識別改進機會
- 假設驗證: 使用 A/B 測試驗證歸因分析的洞察
報表製作建議
- 視覺化呈現: 將複雜的歸因資料製作成圖表
- 重點突出: 聚焦於高影響力的活動和關鍵洞察
- actionable: 提供具體的行動建議和改進方向
文件版本: v1.0
最後更新: 2025-07-24
適用對象: 業務人員、行銷人員、分析師